Regulation of natural killer cell-mediated cytotoxicity by serine/threonine phosphatases: identification of a calyculin A-sensitive serine/threonine kinase.

نویسندگان

  • A Bajpai
  • Z Brahmi
چکیده

We have recently reported that Ser/Thr phosphatases play a key role in regulating natural killer (NK) cell lytic activity and that calyculin A and okadaic acid affect this activity differently [Bajpai and Brahmi (1994) J. Biol. Chem. 269, 18864-18869]. Here, we investigate a mechanism that might account for this differential action of calyculin A and okadaic acid on NK cells. Calyculin A specifically inhibited the lytic activity of YT-INDY, an NK-like cell line, and hyperphosphorylated 60 and 78 kDa proteins. The kinetics of appearance of these two proteins was correlated with the loss of lytic activity. In contrast, okadaic acid did not significantly affect either of these activities. The 78 kDa protein is localized in the cytosolic compartment whereas the 60 kDa protein is distributed equally between the membrane and the cytosolic fractions. Both proteins display a kinase activity and are phosphorylated mainly at serine and threonine residues but not at tyrosine residues. The activation of these kinases is specific to calyculin A treatment; it is independent of protein kinase C, protein kinase A, Ca2+, phosphotyrosine phosphatase and protein synthesis de novo. In conclusion, we have demonstrated that calyculin A, but not okadaic acid, hyper-phosphorylates two proteins with Ser/Thr kinase activity, thus explaining the differential regulation of NK cells by these two Ser/Thr phosphatase inhibitors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of protein phosphatase 2A induces serine/threonine phosphorylation, subcellular redistribution, and functional inhibition of STAT3.

Signal transducers and activators of transcription (STATs) are rapidly phosphorylated on tyrosine residues in response to cytokine and growth factor stimulation of cell surface receptors. STATs hereafter are translocated to the nucleus where they act as transcription factors. Recent reports suggest that serine phosphorylation of STATs also is involved in the regulation of STAT-mediated gene tra...

متن کامل

Protein kinase C regulates expression and function of inhibitory killer cell Ig-like receptors in NK cells.

The inhibitory killer cell Ig-like receptors (KIR) negatively regulate NK cell cytotoxicity by activating the Src homology 2 domain-containing protein tyrosine phosphatases 1 and 2 following ligation with MHC class I molecules expressed on normal cells. This requires tyrosine phosphorylation of KIR on ITIMs in the cytoplasmic domain. Surprisingly, we have found that KIR3DL1 is strongly and cons...

متن کامل

Evidence for a Dithiol-Activated Signaling Pathway in Natural Killer Cell Avidity Regulation of Leukocyte Function Antigen-l: Structural Requirements and Relationship to Phorbol Ester- and CD16-Triggered Pathways

Dithiothreitol (Dm) activation of the adhesive function of several different integrins suggests the existence of a common DlT-sensitive integrin regulatory element. Uill/E3, a natural killer (NK) cell-resistant murine target cell line genetically engineered to constitutively express human intercellular adhesion molecule-l (ICAM-1; CD%) was used in a flow cytometric experimental model to evaluat...

متن کامل

Electron Ionization of Serine and Threonine: a Discussion about Peak Intensities

The present study describes the fragmentation under electron ionization (EI) of gas phase serine and threonine amino acids. Ab initio methods were performed to calculate the fragmentation paths and interpret the mass spectra. The six lowest energy conformers of L-serine, L-threonine and L-allo-threonine were obtained with B3LYP, G3MP2 and MP2 methods. The adiabatic and vertical ionizat...

متن کامل

LRRK2 kinase activity and biology are not uniformly predicted by its autophosphorylation and cellular phosphorylation site status

Missense mutations in the Leucine-Rich Repeat protein Kinase 2 (LRRK2) gene are the most common genetic predisposition to develop Parkinson's disease (PD) (Farrer et al., 2005; Skipper et al., 2005; Di Fonzo et al., 2006; Healy et al., 2008; Paisan-Ruiz et al., 2008; Lesage et al., 2010). LRRK2 is a large multi-domain phosphoprotein with a GTPase domain and a serine/threonine protein kinase dom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 320 ( Pt 1)  شماره 

صفحات  -

تاریخ انتشار 1996